

박홍준 연구 포트폴리오

포트폴리오(웹사이트버전) https://hpark46.github.io/

TABLE OF CONTENTS

01 문장 유사도 출론 Roberta 파인튜닝하여 문장간 유사도 점수 유추 (0-5) 수행

02

MatchSum 구현

MatchSum 논문의 전처리와 모델구조 구현

03

Hate Speech Detection

Electra를 파인튜닝 하여 multiclass classification 수행 04

Decision Tree Learning & Linear Classifiers

Overfitting 방지와 Threshold, Logistic Regression 연습

TABLE OF CONTENTS

05

Boyer-Moore

월 d Character & Good suffix heuristic을 사용한 문자열 매칭 알고리즘 구현 연습 06

Automated Reasoning

진리표 enumeration와 Resolution을 사용한 논리 추론 알고리즘 구현

07

Uncertain Inference

Bayesian Network 구조로 추론 알고리즘 구현 08

모의 보험 데이터베이스구축/시각화

Semantic Textual Similarity

http://velog.io/@howay96/ Korean-Semantic-Textual-S imilarity

1. 문장 유사도 추론 (STS TRAIN DISTRIBUTION Semantic Similarity

두 Benchmark 데이터를 Random Sampling 하여 튜닝한 모델을 API화 하였습니다.

- 모델: Klue/roberta-large
- Tokenizer: BertTokenizer
- Dataset
 - Klue-STS
 - Kor-STS
 - 문장1, 문장2 와 real-label/score 만 사용
- Preprocessing
 - o 따옴표 + 모든 특수부호 제거
 - o Labels = Labels / 5
 - Train/Test 데이터 셋 9:1로 분배

△ Klue-STS 데이터 분포

```
Train Dataset Length: 5749

Train DISTRIBUTION

Semantic similarity pair with score 0 to 0.5 : 592 (10.297443033571057%)

Semantic similarity pair with score 0.5 to 1.5 : 833 (14.489476430683599%)

Semantic similarity pair with score 1.5 to 2.5 : 902 (15.68968516263698%)

Semantic similarity pair with score 2.5 to 3.5 : 1359 (23.63889372064707%)

Semantic similarity pair with score 3.5 to 4.5 : 1435 (24.96086275874065%)

Semantic similarity pair with score 4.5 to 5 : 362 (6.296747260393112%)
```

△ Kor-STS 데이터 분포

모델 / 파인 튜닝

Weight를 공유하는 Siamese BERT Network를 이용해, 각 sentence embedding에 mean-pooling operation을 추가로 진행해 Cosine Similarity 을 구하는 방식으로 설계되어 있습니다.

	V1	V2	V3	V4
Batch Size	8	16	8	16
Learning Rate	1.00E-05	1.00E-05	2.00E-05	3.00E-05
Warm up	0.1	0.1	0.2	0.6
Weight Decay	0.01	0	0	0.01
Epochs	4	4	5	5

Klue paper에 명시된
hyperparameter를 모두 시도하기에는

- ● 제약이 있어 4번에 random search로
- • 진행하였습니다.

```
class CustomPooling(nn.Module):
   def __init__(self):
        super(CustomPooling, self).__init__()
        self.robert = AutoModel.from pretrained("klue/roberta-large")
        self.cos score = nn.Sequential(
            nn.Identity()
   def forward(self, senone, sentwo):
        output one = self.robert(input ids=senone['input ids'], attention mask=senone['attention mask'],
                             token type ids=senone['token type ids'])
       output_two = self.robert(input_ids=sentwo['input_ids'], attention_mask=sentwo['attention_mask'],
                             token_type_ids=sentwo['token_type_ids'])
        pooled one = mean pooling fn(output one, senone['attention mask'])
        pooled two = mean pooling fn(output two, sentwo['attention mask'])
       cos sim = torch.cosine similarity(pooled one, pooled two)
       logit = self.cos score(cos sim)
       return logit
```

△ Model

```
def mean_pooling_fn(output, attention_mask):
    embedding = output.last_hidden_state # (batch_len, longest sentence length, latt_msk = attention_mask # (batch_len, 1024)
    mask = att_msk.unsqueeze(-1).expand(output.last_hidden_state.size()).float()
    masked_embedding = output.last_hidden_state * mask
    me_sum = torch.sum(masked_embedding, l) # (batch_len, 1024)
    ms_sum = torch.clamp(mask.sum(l), min=le-9) # (batch_len, 1024)
    mean_pool = me_sum/ms_sum # (batch_len, 1024)
    return mean_pool
```

Klue-STS Best Model

Klue-STS에만 4번 튜닝을 진행한 결과,제일 좋은 성능을 보여주는 모델은 validation set에서My ModelKlue 최고 성능

• Pearsonr: 89.4 Pearsonr: 93.35

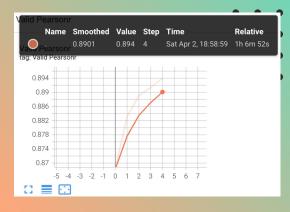
• F1 Score: 84.9 F1 Score: 86.63

Avg Loss: 0.594

를 기록하였습니다. (성능 부족은 epoch의 차이로 보입니다)

이 모델을 Kor-STS test set에 예측시켜본결과

- Spearman: 77.63
 F1 Score: 77.93
 으로 만족스럽지 않은 성능을 보여 두 데이터를 섞어
- • 나온 결과가 궁금해 Random Sampling 두 데이터 셋에
- • 태해 다시 fine-tuning 하였습니다.



△ Pearsonr

△ F1 Score

Final Model & API

다시 Fine-Tuning을 진행한 결과, Klue-sts-dev

- Pearsonr: 88.45 (-0.95)
- F1 Score: 85.02 (-0.11)

Kor-STS-test

- Spearman: 83.55 (+5.92)
- F1 Score: 83.83 (+5.9)
- 의 성능을 보여주었습니다.

Metric

Pearson과 Spearman은 다른 모델들의 성능과 제 모델 성능을 비교하기 위해 사용하였습니다.

F1 Score: Predict 값과 label에 0-5 range 중 3에 Threshold를 부여해 계산하였습니다 API기능

Get (1:1 점수 Predict)

```
requests.get("http://127.0.0.1:5000/predict",
{'sentence_one': '한 남자가 밧줄을 타고 올라간다.',
'sentence_two': '한 남자가 밧줄을 타고 올라가고 있다.'})
```

Similarity Score: b'4.906567573547363'

Post (1:N 점수 Predict)

Top 3 유사 문장:

- 1. 한 남자가 음식을 먹고 있다.
- 2. 남자가 먹고 있다.
- 3. 한 남자와 여자가 식당의 테이블에 앉아 있다.

MatchSum 추출요약 구혀

http://velog.io/@howay96/MatchSum

Overview

사용모델

- klue/roberta & Kobert
- 형태소 분석이 가능한 KorBERT를 사용하고 싶었으나 시간의 편의상 다른 bert 모델을 사용하였습니다.

사용한 데이터 셋

- 문서요약 텍스트 train_original_news (AI-Hub)
- Text / Extractive / Abstractive 3개의
 Column만 사용하였습니다

Cleaning Data

- Abstractive 요약본이 없는 기사 (4개)
- • • Extractive Column에 None 포함
- • (8개)
- • 는 제거하였습니다.

△ 문서요약 텍스트 데이터셋

Preprocessing

기본 전처리

- 영문/한글/숫자 제외 모든
 Special Characters는 제거
 하였습니다
- 논문상에서 non-anonymized version을 사용하는 것을 보고 ㅁㅁㅁ 기자 와 같은 자주 등장하는 문장들은 따로 다루지 않았습니다

MatchSum Paper에서 명시된 3 전처리 Steps

- Candidates Pruning (BertExt)
- • Candidate Combination
- Sorting based on Rouge
- • (1+2+L)/3

Candidates Pruning
MatchSum paper 내에서 trigram
blocking을 사용하지 않는 BertSum
모델을 사용해 원본 기사를 5-10줄로
Pruning 하였으나, 이를 대체할 방법으로
BertSum Paper에 명시된, Oracle
Summary 제작에 사용되는
Greedy-Selection
와 2리즘을 변형해
사용하였습니다.

Preprocessing

MatchSum paper 내에서 trigram blocking을 사용하지 않는 BertSum 모델로 문장당 점수를 부여해 원본 기사를 5-10줄로 Pruning 하였으나, 이를 대체할 방법으로 BertSum Paper에 명시된, Oracle Summary 제작에 사용되는 Greedy-Selection/Combination-Selection 알고리즘을 변형해 사용하였습니다.

• Extractive Column (사람이 추출한 3문장)을 포함해 Rouge 1&2 점수를 최대화하는 문장 2개를 추가로 선정하는 방법입니다.

5개의 문장으로 이루어진 'Extractive'로 5C2 + 5C3 = 20개의 Candidate Summary 제작 후, 본문과 비교하여 (Rouge 1 + 2 + L)/3 점수가 가장 높은 소서대로 정렬하였습니다.

• • •

	greedy	highest
0	[2, 3, 10, 1, 0]	[2, 3, 10, 5, 8]
1	[2, 4, 11, 1, 0]	[2, 4, 11, 9, 3]
2	[3, 5, 7, 2, 1]	[3, 5, 7, 2, 4]
3	[2, 3, 4, 0, 1]	[2, 3, 4, 0, 6]
4	[3, 7, 4, 2, 1]	[3, 7, 4, 2, 0]

△ Pruned Document Index (각 5문장)

*Greedy Algorithm 사용 시 가장 짧은 문장만 (index 0 &1) 추가로 선정하는 경향이 있어 Highest Column의 index 사용

Tokenization & Model

Document (본문), Candidate Summary, Gold Summary (사람 작성 요약본) 모두

[CLS] + Tokenized + [SEP] Format으로 토큰화 하였는데 Google Colab가 용량을 handle 하지 못해

- ▶ Candidate Summary 개수의 조정
- Candidate Summary max_length 조정 (Default: 180)
- Document max_length 조정 (Default: 512)
- Batch Size 조정

등을 필요로 하였습니다.

Model

- Siamese-Bert architecture (Document, Candidate & Gold summary의 Embedding 필요)
- [CLS] 토큰 벡터로 문서/요약본 Representation
- MarginRankingLoss 사용 (Margin-Based triplet loss)


```
class MatchSum(nn.Module):
  def init (self):
       super(MatchSum, self).__init__()
       self.robert = AutoModel.from_pretrained("klue/roberta-large")
   def forward(self, text id, candidate id, summary id):
       #document embedding
       doc = self.robert(input_ids=text_id['input_ids'], attention_mask=text_id['attention_mask'],
                         token_type_ids=text_id['token_type_ids'])
       doc emb = doc[0][:,0] # batch size, 1024
       abst = self.robert(input_ids=summary_id['input_ids'], attention_mask=summary_id['attention_mask'],
                         token_type_ids=summary_id['token_type_ids'])
       abst_emb = abst[0][:,0] # batch_size, 1024
       f_dcs = torch.cosine_similarity(abst_emb, doc_emb, dim=-1)
       #candidate embedding
       ids = []
       token type = []
       attention = []
       for doc tok in candidate id:
           ids.append(doc tok['input ids'])
           token type.append(doc tok['token type ids'])
           attention.append(doc tok('attention mask'))
       ids = torch.stack(ids).view(-1, len(ids[0][0]))
       token type = torch.stack(token type).view(-1, len(token type[0][0]))
       attention = torch.stack(attention).view(-1, len(attention[0][0]))
       cand = self.robert(input_ids=ids, attention_mask=attention,
                         token type ids=token type)
       cand emb = cand[0][:,0]
       doc_emb = doc_emb.unsqueeze(1).expand_as(cand_emb)
       f dcij = torch.cosine similarity(cand emb, doc emb, dim=-1)
       return {'cand_score': f_dcij, 'abst_score': f_dcs}
```

△ MatchSum 모델

Hate Speech Detection

http://velog.io/@howay96/Kore an-Hate-Speech-Detection

Overview

사용모델

- KcElectra-base
- 네이버 뉴스 댓글과 대 댓글을 수집해 tokenizer와 Electra 모델을 pretrain 한 모델로, 가장 적합한 모델이라고 판단하였습니다.

사용한 데이터 셋

- Korean-Hate-Speech-Detection (Kaggle)
- Comments, Hate Column만 사용하였습니다

Data Cleaning

- • • 한자 / special characters
- • URL & HTML

none 3486 offensive 2499 hate 1911

Name: hate, dtype: int64

none: 0.44148936170212766 of the dataset offensive: 0.31648936170212766 of the dataset

hate: 0.24202127659574468 of the dataset

△ Hate-Speech Dataset (Hate Column Label) 분포

Preprocessing

Multi-Class Classification Task 을 위해 Label을

- [1,0,0]: None (0)
- [0,1,0]: Offensive (1)
- [0,0,1]: Hate (2)

으로 변형하였습니다

```
[[0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [' 현재 호텔주인 심정 아18 난 마른하늘에 날벼락맞고 호텔망하게생겼는데 누군 계속 추모받네 ', '
```

Model

Discriminator을 통해 나온 CLS 토큰 벡터를 3개의 Label에 대해 각각의 확률을 Return 하는 Classification Head로 통과시켜 Prediction을 진행합니다.

- Optimizer: AdamW
- Loss Function: CrossEntropyLoss

```
class HateClassifier(nn.Module):
   def init (self, hidden size, n label):
       super(HateClassifier, self). init ()
       dropout rate = 0.5
       linear layer size = 515
       self.kcelectra = AutoModel.from pretrained("beomi/KcELECTRA-base")
       self.classifier = nn.Sequential(
           nn.Linear(hidden size, linear layer size),
            nn.ReLU(),
            nn.Dropout(dropout rate),
           nn.Linear(linear layer size, n label),
   def forward(self, input ids = None, attention mask = None, token type ids = None):
       output = self.kcelectra(input ids=input ids, attention mask=attention mask
                                , token type ids=token type ids)
       cls = output[0][:,0]
       logit = self.classifier(cls)
       return logit
```

△ Hate-Speech Classifier 모델

Fine-Tuning/Test

4개의 다른 Hyperparameter Setting에서 Fine-Tuning을 진행하였습니다

- V3: V2 Setting에서 Special Character 와 Punctuations를 제거하지 않은 데이터 사용
- V4: 사용 모델 KcElectra-base → kcelectra-base-v3-discriminator

모델 성능

V2 epoch 1 (Validation Set) 에서

- 74%의 Accuracy
- 0.633의 Loss

을 기록하였습니다

	V1	V2	V3	V4	
Batch Size	32	32	32	32	
Learning Rate	2.00E-05	2.00E-05	2.00E-05	2.00E-05	
Dropout Rate	0.1	0.5	0.5	0.5	
Eps	1.00E-08	1.00E-08	1.00E-08	1.00E-08	
Epochs	4	4	4	4	
Hidden Layer	768	515	515	515	
Warm up	len*0.1	len*0.1	len*0.1	len*0.1	

△ Fine-Tuning Details

	comments	label
0	ㅋㅋㅋㅋ 그래도 조아해주는 팬들 많아서 좋겠다 ㅠㅠ 니들은 온유가 안만져줌 ㅠㅠ	2
1	둘다 넘 좋다~행복하세요	0
2	근데 만원이하는 현금결제만 하라고 써놓은집 우리나라에 엄청 많은데	0
3	원곡생각하나도 안나고 러블리즈 신곡나온줄!!! 너무 예쁘게 잘봤어요	0
4	장현승 얘도 참 이젠 짠하다	1

• Kaggle Competition Score: 0.66421 (#2)

△ 예시 Prediction

Decision Tree Learning & Linear Classifiers

프로젝트 요약

Information Gain의 최대화 하는 Attribute 선정 방법을 포함한 Entropy based Decision tree를 구현하였습니다. 알고리즘은 Overfitting을 방지하기 위해 관련 없는 Node를 Prune 하며, 학습 시 tree의 정확도를 모니터하였습니다.

추가로, Perceptron Learning Rule과 Hard Threshold를 사용하는 Classifier, Logistic Regression을 바탕으로 분류하는 Classifier를 구현하여, Clean/Noisy 데이터와 Learning Rate가 학습에 미치는 영향을 학습할 수 있는 계기가 되었습니다.

Decision tree 학습용 예시 데이터로는 Iris 데이터 셋을

- • 사용하였고, Classifier 학습을 위해 Earthquake 데이터
- • 셋을 사용하였습니다.
- • •

Boyer-Moore 문자열 매칭

https://velog.io/@howay96/Boy er-Moore-%EB%AC%B8%EC %9E%90%EC%97%B4-%EB%

프로젝트 요약

Exact String Matching으로 자주 사용되는 Boyer-Moore 문자열 매칭 알고리즘을 구현하였습니다.

- Bad Character Heuristic
- Good Suffix Heuristic

두 가지로 이루어진 알고리즘으로 pattern의 포지션을 기준으로 가장 optimal 한 shift를 적용합니다.

Preprocessing

- Bad Character Heuristic
 - o 패턴이 가진 character당 얼마만큼 shift 해야 하는지 matching 이전에 미리 계산 합니다
- Good Suffix Heuristic
 - Border와 Shift 두 array를 계산합니다
 - Shift[i]: i-1에서 mismatch가 일어날 시 shift할 값
- Border: 각 패턴의 포지션에 대해 가장 넓은 border의 가장 빠른 index

△ Bad Character 전처리

```
def preprocess goodsuff(pattern, border, shift, pl):
    ione = pl
    itwo = pl + 1
    border[ione] = pl + 1  # border is outside of pattern
    # strong good suffix
    for _ in range(pl):
        while (itwo < pl + 1) and (pattern[ione-1] != pattern[itwo-1]): #th
            if shift[itwo] == 0:
                shift[itwo] = itwo - ione # amount to jump
            itwo = border[itwo] #
        ione, itwo = ione -1, itwo -1
        border[ione] = itwo
    # partial good suffix
    for index in range(len(border)):
        if shift[index] == 0:
            if index > border[0]:
                shift[index] = border[border[0]]
                shift[index] = border[0] # widest boarder of the pattern
```

알고리즘 / 사용 예시

Input 예시

- Array 1: List of patterns to be matched
- Array 2: List of Text to be matched

```
P = ["aaa", "aaaabb", "aabbcc", "abb", "bcc", "bbcc", 
T = ["aaaabbaabbccdd", "aabbccddcceeaabbaaaaa"]
```

Output 예시

- Mode 1
 - 각 패턴이 text에 존재하는지 Yes/No로 Return
- Mode 2
 - 각 Text에 대해 각 패턴의 첫 번째
 appearance의 첫 번째 index를 return
- • •• Mode 3
- ● □ 각 Text에 대해 각 패턴의 모든 appearance의
 ● □ 첫 번째 index를 return

```
shift = [0 for _ in range(pl + 1)]
rb = preprocess_badchar(pattern)
                                        # reference for
preprocess_goodsuff(pattern, border, shift, pl) # prepro
# print(rb[ord("a")])
while (index < tl - pl + 1):
    # print(index)
    # check for mismatch index (on the text) (examine f
    mismatch = -1
    for x in range(1, pl+1): # 1~8
        if text[index + pl - x] != pattern[pl - x]: #8
            mismatch = index + pl - x # index + 8 - (1~8)
    if mismatch == -1: # matched
        position.append(index) # list.append(index) # to
        if mode != 3:
            return position
            index = index + shift[0]
    # determine what shift to take (bad_char/good_suff)
        qsi = good suff shift(shift, index, mismatch)
       bci = bad_char_shift(rb, text, index, mismatch)
        # print(gsi, bci)
        index = index + max(qsi, bci)
return position #no match
                               (when finding all possib)
```

pl, tl, index = len(pattern), len(text), 0 # pattern ler

def boyer_moore(pattern, text, mode):

border = [0 for in range(pl + 1)]

position = []

△ Main 알고리즘

Automated Reasoning

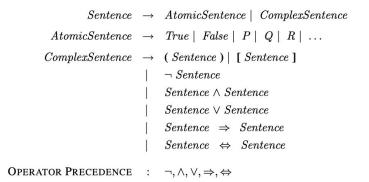
프로젝트 요약

명제 논리 추론 알고리즘 연습을 위해 Backus-Naur For 문법을 나타낼 수 있는 구조를 만들었고, 첫 번째 추론 방법은 진리표 enumeration 알고리즘을 구현하였습니[

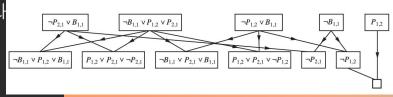
모든 Atomic Sentence에 True/False 값을 부여하지식베이스가 쿼리를 entail 하는지 판단합니다.

두번째 추론 방식으로는 지식베이스와 쿼리의 문법을 논리곱 정규형으로 변형해 대입하는 귀류법을 기반으로 한 Resolution 알고리즘을 구현하였습니다.

성공적으로 쿼리가 entail 될 수 있는지 리턴합니다



△ Backus-Naur Form



△ Resolution 알고리즘

Uncertain Inference

프로젝트 요약

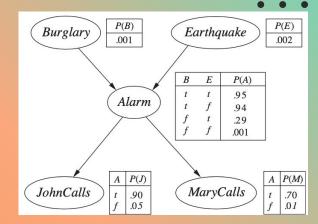
Bayesian Network structure를 구현한 뒤, 세 가지 추론 알고리즘을 구현하였습니다.

Enumeration을 이용한 첫 번째 Exact Inference 알고리즘은

• XMLBIF 파일에서 주어진 Evidence에 따라 각 쿼리 variable의 확률을 리턴합니다.

그 다음으로 Approximate Inference를 위해서는

- Prior Distribution을 기반으로 모든 Event를 생성해 Evidence와 상반되는 Event를 제거하는 Rejection Sampling
- Evidence와 일정한 Event만 생성해 Rejection Sampling의 비효율성을 보완하는 Likelihood-weighting
- • 두 알고리즘을 구현하였습니다
- • •
- • •



△ Bayesian Network 예시

모의보험데이터베이

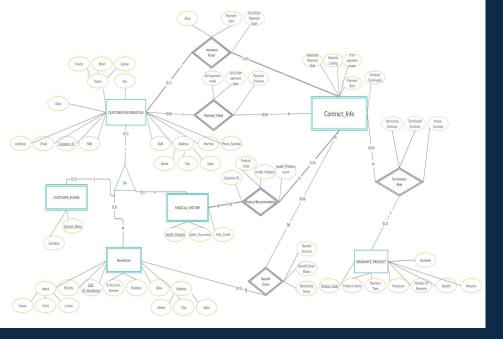
프로젝트 요약

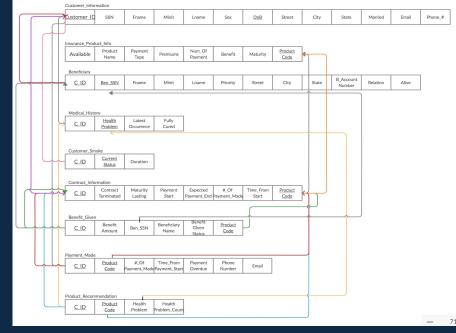
HTML과 PHP를 사용해 로컬 서버에 생명보험 정보를 보고 편집할 수 있는 웹페이지를 만들었습니다. 데이터베이스는 MySQL로 구축되었으며, 데이터는 여섯 가지의 Entities와 다섯 가지의 Relationships로 이루어져 있습니다.

고객 계정으로 사이트에 접속하는 경우 non-key attributes를 수정할 수 있는 권한을 가지게 되며, 고객의 건강 기록을 바탕으로 추천하는 보험 상품들이 소개됩니다.

직원 계정은 더 많은 권한을 가지며 모든 데이터를 추가, 제거, 수정할 수 있는 권한을 가지게 됩니다.

- • •
- • 프로젝트를 진행하면서 ER diagram, Relationship type
- • mapping, 하고 데이터베이스의 시각화 연습할 기회가 되었습니다.





△ER Diagram

△Relation Diagram

프로젝트 Diagrams